Contents lists available at [ScienceDirect](http://www.sciencedirect.com/science/journal/09574166)

Tetrahedron: Asymmetry

journal homepage: www.elsevier.com/locate/tetasy

Practical resolution of 3-aminopyrrolidine via diastereomeric salt formation with (S)-2-methoxy-2-phenylacetic acid

Rumiko Sakurai^{a,}*, Atsushi Yuzawa ^b, Kenichi Sakai ^c

^a Faculty of Pharmacy, Iwaki Meisei University, Iwaki, Fukushima 970-8551, Japan

^b R&D Division, Yamakawa Chemical Industry Co., Ltd, Kitaibaraki, Ibaraki 319-1541, Japan ^c Specialty Chemicals Research Laboratory, Toray Fine Chemicals Co., Ltd, Nagoya, Aichi 455-8502, Japan

Article history: Received 16 May 2008 Accepted 17 June 2008 Available online 16 July 2008

article info

ABSTRACT

The resolution of 3-aminopyrrolidine 1, a versatile key intermediate for chiral pharmaceuticals, via diastereomeric salt formation was investigated. The resolution conditions were optimized focusing on an industrial-scale production to afford enantiopure (R) -1, while (S) -methoxy-2-phenylacetic acid 5 was found to be a suitable resolving agent. The less-soluble diastereomeric salt, 1:2 (R) -1: (S) -5, was obtained with high resolution efficiency (E) (yield 44%, 98% de, E 86%) under the best resolution conditions; (KS) -1/ (S) -5/HCl molar ratio = 1.0/1.0/1.0 in water solvent in the presence of sodium chloride. The optimized resolution process was scaled up to a pilot-scale production using 50 kg of (RS)-1 dihydrochloride as a starting racemate, and the resolution efficiency successfully reproduced the laboratory results.

- 2008 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that enantiopure 3-aminopyrrolidine 1 is a versatile key intermediate for chiral pharmaceuticals. Enantiopure 1 is widely used as an essential component of the antibacterial agents, Tosufloxacin,^{1a} Clinafloxacin,^{1b} and Ceftobiprole.^{1c} Moreover, the basic skeleton of 3-aminopyrrolidine is also found in many promising medicines with various indications currently being devel-oped, such as Ca-sensitive receptor agonist,^{[2](#page-3-0)} histamine H3 receptors antagonists,^{[3](#page-3-0)} adenosine A_{2A} receptor agonist,^{[4](#page-3-0)} allergic inflammatory,⁵ and antitumor compounds.^{[6](#page-3-0)} Therefore, the establishment of a practical process for obtaining enantiopure 1 in high enantiomeric purity at a low cost is urgently required.

To obtain enantiopure 1, the asymmetric synthesis and resolution of racemic 3-aminopyrrolidine derivatives have been reported. In the asymmetric synthesis, enantiopure 3-hydroxypyrrolidine is used as a starting material in which a 3-hydroxyl group is converted into an amino group by a nucleophilic displacement reaction.[7](#page-3-0) However, this process requires five steps to obtain a precursor of 1, 3-acetamidepyrrolidine, and the total yield is insufficient (46%). On the other hand, the resolution of (RS) -1 using Ltartaric acid 2 as a resolving agent has been reported.^{8a} Despite this, there are some critical issues, such as low resolution yield (28%) and difficulty in recovery of the resolving agent 2 from both the resulting less-soluble salt and resolution mother liquor because of high solubility of $L-2$ in the water solvent. The resolution of rac-N-benzyl-3-aminopyrrolidine with various chiral acids is also widely known: using mandelic acid, $8a$ tartaric acid $8b$ and its derivative (dibenzoyl-tartaric acid), 8b,c amino acid derivatives (N-acyl-, or N-sulfonyl amino acid), $8c$ and 10-camphorsulfonic a cid.^{8d} To obtain enantiopure 1, however, an additional step, the de-N-benzylation process, should follow the resolution step. As described above, a facile, simple, and effective process to obtain enantiopure 1 which is applicable for the industrial-scale production has not yet been found. We tried to establish an effective resolution process for producing enantiopure 1 via diastereomeric salt formation, since the resolution process is still a useful and simple tool for obtaining enantiopure compounds in industrial production, and because it is easy to reproduce laboratory-scale data in an industrial-scale operation. We found the best resolution conditions to obtain the less-soluble diastereomeric salt with high enantiomeric purity and sufficient industrial productivity.

2. Results and discussion

2.1. Finding a suitable resolving agent for the resolution of (RS)-1

To find the most suitable resolving agent for (RS)-1, 8 kinds of commercially available acidic resolving agents were examined; tartaric acids $[$ -tartaric acid 2 (as a reference) and dibenzoyl- $-$ tartaric acid 3, α -substituted phenylacetic acids $[(S)$ -mandelic acid 4, (S)-2-methoxy-2-phenylacetic acid 5, and (S)-2-acetoxy-2-phenylacetic acid 6], amino acid derivative [N-tosyl-(S)-phenylalanine 7], and other monocarboxylic acids derived from (R)-1-methylbenzylamine with diacids $[(R)-(+)$ -N- $(\alpha$ -methylbenzyl)phthalic acid monoamide 8 and (1R,3R)-1-(1-phenylethyl)-5-oxo-3-pyrrolidine

^{0957-4166/\$ -} see front matter © 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetasy.2008.06.025

carboxylic acid 9] (Fig. 1). The resolution solvent in each resolution experiment was selected from water, alcohols (C_1-C_3) , or their mixed solvent, and the solvent volume was determined after considering the solubility of the solutes at 50 \degree C. The less-soluble diastereomeric salts obtained from the resolution experiments were evaluated by ¹H NMR, chiral GC, and elemental analyses. The diastereomeric purity of the salt obtained in each resolution experiment was determined as de(diastereomeric excess)% based on enantiomeric purity of 1 in the salt.^{[9](#page-3-0)} The resolution efficiency (E , %) of the salt was calculated based on the yield and de%.[9](#page-3-0) Resolution experiments were performed under neutral conditions using a stoichiometric quantity of resolving agent to (RS)-1, that is, since (RS)-1 is a diacidic base with two amino groups (primary and secondary amines) in its molecule, dibasic acids 2 and 3 were used in a molar amount to (RS)-1, respectively. On the other hand, monobasic acids 4, 5, 6, 7, 8, and 9 were used in 2.0 molar amounts to (RS)-1, respectively. The experimental results are summarized in Table 1.

At first, the reported resolution method using L-tartaric acid (R,R) -2 as a resolving agent was examined according to the literature $[(RS)-1/L-2 \text{ molar ratio} = 1.0/1.0 \text{ in } 40\% \text{ MeOH aqueous solu-}$ tion].8a To our surprise, the reported data could not be reproduced with no crystal forming, only an oil, as shown in Table 1 (entry 1). Moreover, no salt crystals were obtained from water solvent (entry 2). In contrast, only 0,0'-dibenzoyl-L-tartaric acid 3 afforded diastereomeric salt crystals, (R) -1/L-3, from the ethanolwater mixed solvent (83% and 71% ethanol), whereas no crystals were obtained from pure ethanol, although their resolution efficiencies were poor: E 25% (yield 16%, 77% de) from 83% ethanol and E 12% (yield 62%, 10% de) from 71% ethanol (entries 3 and 4). On the other hand, no crystals were deposited with the other resolving agents (S)-4, (S)-6, (R)-8, and (1R,3R)-9, although the sol-

utes of each resolution reaction finally dissolved at around 50 \degree C (entries 6, 7, 9, 11, and 12). In a case using (S) -7, the resolution reaction system was solidified at around ambient temperature, although the solutes of the resolution were completely dissolved at 50 \degree C and crystallization was observed upon cooling (entry 10). When using (S) -5, no sign of dissolution of the solutes was observed at all (entry 8). From these experimental results, we concluded that the partially resolved 1 can be obtained by using $L - 3$ as a resolving agent, but the resolution efficiencies were unsatisfactory (E 12–25%) for industrial-scale production. Since other resolving agents seemed to be unable to resolve (RS)-1, we promptly tested (S) -5 or (S) -7 as a resolving agent. We discovered that resolution conditions using resolving agent 5 or 7 may be improved upon by changing the resolution environments such as its molar ratio to (RS)-1 and/or the solvent system because these resolving agents have the capacity to make a salt with molecule 1. Thus, we attempted to optimize the resolution conditions using (S) -5 or (S) -7 as a resolving agent.

2.2. Optimization of resolution conditions

First, resolution conditions were optimized using a half equivalent amount of monobasic acid (S) -5 [1 molar to (RS) -1 [compared] with the former case [2 molar to (RS)-1; Table 1, entry 8] in water solvent. Experimental results are summarized in [Table 2](#page-2-0). Most surprisingly, the less-soluble salt $1:2(R)-1:(S)-5(1/5 \text{ molar ratio} = 1/2)$ was crystallized with the highest diastereomeric purity although the resolution yield was low ([Table 2,](#page-2-0) entry 1; >99% de, yield 11%, E 22%). This fact indicates that 2 mol of the resolving agent (S) -5 are essential to form the less-soluble salt with (R) -1. Moreover, a reaction environment with 1 molar amount of resolving agent (S) -5 in the

Entry	Resolving agent	Molar ratio (equiv)	HCl (equiv)	Water volume versus (RS) -1 (w/w)	Yield ^a $(\%)$	de(%)	E(%)
	$(S) - 5$	1.0	None			>99	22
∠		1.0	1.0	10	39	97	76
		0.8	1.2	10		94	58
	$(S) - 7$	1.0	None	10	24	88	42
		1.0	1.0		47	65	61

Resolution of free (RS) -1 with resolving agents (S) -5 and (S) -7

^a The components of the salt are as follows: $(R)-1/(S)-5 = 1/2$, $(R)-1/(S)-7/H₂O = 1/2/2$.

resolution reaction system favors the strict recognition of a particular stereoisomer (R) -1, whereas no particular chiral recognition was observed at 1/5 = 1/2, as shown in [Table 1](#page-1-0). In other words, chiral recognition of diamine 1 with (S) -5 is sharpened under the less molar resolving agent, implying that molecule 1 is abundantly present.

In order to practically improve the resolution yield, the Pope and Peachey method,^{[10](#page-3-0)} which is known as the 'half equivalent method of resolution', was examined. In doing so, we expected a drastic improvement of the resolution efficiency. In the resolution experiments according to this method, the total acid molar ratio to diamine 1 was adjusted to be equivalent on the basis of an acid– base equilibrium, that is, if one mole of monobasic acid (S) -5 is used, the residual base is neutralized with one mole of another inorganic acid such as HCl. As intended, the 1:2 $(R)-1$: $(S)-5$ salt was successfully crystallized as the less-soluble salt with a higher resolution efficiency under the molar ratios of $(RS)-1/(S)-5/$ HCl = 1.0/1.0/1.0 in water solvent (Table 2, entry 2; yield 39%, 97% de, E 76%). Meanwhile, we found that increasing HCl content $[(RS)-1/(S)-5/HC] = 1.0/0.8/1.2]$ decreased the resolution efficiency (Table 2, entry 3; yield 31%, 94% de, E 58%). These results revealed that the Pope and Peachey method using (R) -5 as a resolving agent and HCl as a supplemented acid is extremely effective for the resolution of (RS)-1. The same process was applied to the resolution with (S)-7. However, the resolution efficiency did not improve relative to the use of (S) -5 (Table 2, entry 4 vs entry 5). Therefore, further optimization of resolution of (RS) -1 was achieved using (S) -5, and not (S) -7, as a resolving agent.

To optimize the resolution conditions when taking into account the industrial-resolution process, the effect of sodium chloride was examined since (RS)-1 is sold on the market as a dihydrochloride. Sodium chloride is also a by-product of the recovery–recycling process of the resolving agent. In the resolution experiments, diamine 1 dihydrochloride was freed in the resolution solvent with sodium hydroxide prior to adding resolving agent (S) -5 and supplementing with HCl acid. Experimental results are summarized in Table 3. As shown in Table 3, the resolution efficiency was improved upon, as intended, while maintaining a high diastereomeric purity (Table 3, entry 1; yield 44%, 98% de, E 86%). Meanwhile, an increase in the molar ratio of (S)-5 from 1.0 to 1.5 negatively affected the diastereomeric purity, whereas resolution efficiencies (E) remained at a higher range, that is, between 86% and 89% (Table 3, entries 2 and 3). These results indicate that coexisting sodium chloride in

Table 3 Resolution of (RS)-1 dihydrochloride with resolving agent (S)-5

^a The component of the salt is as follows: $(R)-1/(S)-5=1/2$.

the resolution system played a great role in improving the yield without influencing the diastereomeric purity of the salt.

From the experimental results obtained in the resolution of (RS) -1 with (S) -5 in water solvent containing 2 mol of sodium chloride and one mole of HCl to diamine 1, we conclude that the best molar ratios of 1/5/HCl are 1.0/1.0/1.0. We applied this optimized process in practice to a pilot production using 50 kg scale (RS)-1 dihydrochloride [free (RS)-1 27 kg]. The experimental result obtained in the laboratory could be successfully reproduced and scaled-up to obtained the salt (R) -1:2(S)-5 (53.8 kg, yield 44%, 98% de, E 86%).

3. Conclusion

A new resolution process for (RS)-3-aminopyrrolidine 1 based on the Pope and Peachey method has been established. (S)-2- Methoxy-2-phenylacetic acid 5, HCl, and water were found to be a suitable resolving agent, supplemented acid, and solvent, respectively. The less-soluble salt, 1:2 (R) -1: (S) -5, was obtained in 44% yield with 98% de $(E 86%)$ under the optimal conditions: (RS) -1/ (S) -5/HCl molar ratios = 1.0/1.0/1.0. The optimized process has been successfully demonstrated in a pilot-scale production using 50 kg of (RS)-1 dihydrochloride to give 53.8 kg of the less-soluble diastereomeric salt with 98% de.

4. Experimental

4.1. General

Reagents used in laboratory experiments, free diamine (RS)-3 aminopyrrolidine 1, L-tartaric acid 3, and dibenzoyl-L-tartaric acid 4 were purchased from Tokyo Chemical Industry Co., Ltd. (S)-Mandelic acid **4** ($>99.5\%$ ee), (S)-2-methoxy-2-phenylacetic acid **5** (>99.5% ee), (S)-2-acetoxy-2-phenylacetic acid 6 (>99.5% ee), Ntosyl-(S)-phenylalanine **7** (>99.5% ee), $(R)-(+)$ -N-(α -methylbenzyl)phthalic acid monoamide **8** ($>99.5%$ ee), and $(1R,3R)-1-(1$ phenylethyl)-5-oxo-3-pyrrolidine carboxylic acid 9 (>99.5% ee) were made in Yamakawa Chemical Industry Co., Ltd (Tokyo). ¹H NMR spectra were recorded on a JEOL JNM-ECP400 spectrometer in D_2O . IR spectra were measured on a JASCO IR-700 spectrometer using KBr pellets. Optical rotations were measured on a JASCO DIP-370 polarimeter with a circular temperature control unit. Gas chromatography was performed by a SHIMAZU GC-17A system. Melting points were determined with a YAMATO MP-21 instrument and are uncorrected.

4.2. Determination of diastereomeric excess of 1 in the salt

The diastereomeric excess (de%) of the salt was determined based upon the enantiomeric excess of the diamine 1 liberated from the salt. A sample preparation for the enantiomeric purity by GC analysis is as follows: 1:2 (R) -1: (S) -5 49 mg (0.117 mmol) , containing (R) -1 10 mg) was placed in a vial to which 2 mL water and 2–3 drops 30% NaOH aq were added. The mixture was dissolved followed by extraction of amine 1 with CH_2Cl_2 (3 mL). The extract (1.5 mL) was transferred to a vial with a pipette for GC analysis. Next 3–5 drops of trifluoroacetic anhydride were added to the solution, and N-acylation immediately proceeded to yield N-acyl 1, after which 4μ L of this solution was injected into the GC. The diastereomeric purity of the salt was indicated in % de. Analytical conditions for the GC were as follows: Column: CHIRAL-DEX B-TA ID 0.25 mm \times 30 m, detection: FID, detection temp: 250 °C, injection temp: 200 °C, column temp: 160 °C, carrier gas: He, pressure: 300 kPa, split: 1/10. Retention times: the (S)-enantiomer 14.2 min, the (R)-enantiomer 15.3 min.

4.3. Resolution procedure

4.3.1. Resolution of free diamine (RS)-1 with (S)-5

A typical experimental procedure [e.g., preparation of the 1:2 (R) -1: (S) -5 salt] is as follows ([Table 2,](#page-2-0) entry 2): To a 50 mL flask, free diamine (RS) -1 (2.0 g, 23.2 mmol) and water (16 g) were added. The mixture was stirred, and then (S) -5 $(3.9 g, 23.5 mmol)$ was added to the mixture at room temperature, and heated up to about 70 °C to give a clear solution. Next 35% HCl $(2.4 g,$ 23.0 mmol) was added dropwise to the solution at this temperature, upon which crystallization began immediately. The suspension was maintained for 1 h at 70 \degree C (corresponding to the crystallization temperature), and then gradually cooled to 20 \degree C for about 3 h. After aging the suspension at this temperature for 1 h, crystals were filtered off and washed twice with water (8 mL in total) to yield wet salt crystals, which were dried at 60° C for 3 h to afford crude 1:2 (R)-1:(S)-5 salt (3.8 g, 9.3 mmol, yield 39%, 97% de, E 76%).

The crude salt was recrystallized from water solvent. To a 100 mL flask, 1:2 (R)-1:(S)-5 salt (3.9 g, 9.3 mmol) and water (60.9 g) were added. The suspension was stirred, then heated up to about 96 \degree C to give a clear solution. The solution was then gradually cooled, seeded (2 mg) at 90 °C, kept for 1 h at 87 °C (corresponding to the crystallization temperature), and then cooled again to 20 \degree C. After aging the suspension at this temperature for 1 h, the crystals were filtered off and washed twice with water (8 mL in total) to give wet salt crystals, which were dried at 60 °C for 3 h to afford pure 1:2 (R) -1: (S) -5 salt $(2.4 \text{ g}, 5.8 \text{ mmol})$, yield 62%, >99% de). Analytical data of the less-soluble diastereomeric salts obtained by the resolution are shown below. 1:2 (R) -**1**:(S)-**5**: $[\alpha]_D^{20} = +91.8$ (c 0.5, H₂O); 99.5% de; mp 222.0–223.0 °C; $IR (KBr) cm⁻¹$: 3446, 2997, 2931, 2875, 2823, 2499, 2208, 1639, 1571, 1450, 1400, 1338, 1198, 1099, 1072, 1030, 993, 957, 783, 731; ¹H NMR (D₂O, 400 MHz): δ 7.27-7.20 (10H, m), 4.47 (2H, s), 3.94 (1H, tt, $J = 8.0$, 6.0 Hz), 3.58 (1H, dd, $J = 13.2$, 8.0 Hz), 3.37 $(1H, ddd, J = 12.4, 7.6, 6.8 Hz), 3.28-3.20 (2H, m), 3.19 (6H, s),$ 2.39–2.29 (1H, m), 2.01–1.92 (1H, m); Anal. Calcd for $C_{22}H_{30}N_2O_6$ (FW 418.48): C, 63.14; H, 7.23; N, 6.69. Found C, 62.89; H, 7.06; N, 6.65.

4.3.2. Resolution of (RS)-1 dihydrochloride with (S)-5 in pilot run

Resolution of (RS)-1 dihydrochloride in a pilot run is described as follows: To a 500 L glass-lined reactor (RS)-1.2HCl (50.0 kg, CP 93%, 292 mol), water (203 L), and 30% NaOH aqueous solution (85 kg, 638 mol) were added. The mixture was stirred, and then (S)-5 (47.8 kg, 288 mol) was added at room temperature, and heated up to about 60 \degree C to give a clear solution. To this solution, 35% HCl aq (36.3 kg, 348 mol) was added dropwise at the same temperature, following which crystallization immediately started. The slurry solution was adjusted to a final pH of 5.0 after the addition of 35% HCl. The slurry was gradually cooled to 20 \degree C over 3 h, and kept for 1 h at this temperature. The salt crystals were collected by a centrifuge and washed twice with water for each centrifugation (18 L in total; centrifugation 3 times) to afford the crude salt (wet 61.8 kg, net weight 53.8 kg, 129 mol, yield 44%, 98% de, E 86%).

To a 500 L glass-lined reactor, the crude salt (wet 61.8 kg, drybasis 53.8 kg), water (261 kg), and 30% NaOH aq (34.3 kg) were added. The mixture was stirred, and heated up to about 60 \degree C to give a clear solution. To this solution, 35% HCl aq (26.8 kg, 257 mol) was added dropwise at this temperature, after which crystallization started immediately. The slurry was gradually cooled to 20 \degree C, and kept for 1 h at this temperature. The salt crystals were collected by a centrifuge and washed twice with water for each centrifugation (18 L in total; centrifugation 3 times) to give the pure salt (wet 47.1 kg), and dried at 60 \degree C for 3 h to afford the dry 1:2 (R)-1:(S)-5 salt (43.6 kg, 104 mol, yield 81%, >99% de).

Analytical data of the less-soluble diastereomeric salts obtained by the recrystallization were identical to those of the recrystallized salt obtained in the laboratory run: 1:2 (R)-**1**:(S)-**5**: $[\alpha]_D^{20} = +91.8$ (c 0.5, H₂O); 99.5% de; mp 222.0-223.0 °C.

References

- 1. (a) Tosufloxacin: Merck Index, 14 ed., No. 9555, 2006; (b) Clinafloxacin: Merck Index, 14 ed., No. 2355, 2006; (c) Ceftobiprole: Merck Index, 14 ed., No. 1952, 2006.
- 2. Miyazaki, H.; Tsubakimoto, J.; Yasuda, K.; Takamuro, I.; Sakurai, O.; Yanagida, T.; Hisada, Y. WO 2005,115975.
- 3. (a) Howard, H. R. J.; Wlodecki, B. WO 2006,011042; (b) Ramin, F.; Wesley, D.; Anil, V.; Jurgen, D.; Scott, E. C.; Timothy, A. E.; Youssef, L. B.; Arthur, A. H. Bioorg. Med. Chem. Lett. 2002, 12, 3077–3079.
- 4. Fairhurst, R. A.; Taylor, R. J. WO 2006,097260.
- 5. Morihira, K.; Kubota, H.; Sato, I.; Yokoyama, K.; Morokata, T. WO 2004,022535.
- 6. Tomita, K.; Tsuzuki, Y.; Shibamori, K.; Tashima, M.; Kajikawa, F.; Sato, Y.; Kashimoto, S.; Chiba, K.; Hino, K. J. Med. Chem. 2002, 45, 5564–5575.
- 7. Chu, D. T. W.; Rosen, T. J. JP 01316349, 1989.
- 8. (a) Hojo, T.; Yokoyama, T.; Nakazono, K.; Okada, M. JP 02218664, 1990.; (b) Sakai, T.; Hashimoto, K. JP 09176115, 1997; (c) Nakai, S.; Sato, H. JP 09124595, 1997; (d) Sakai, T.; Hashimoto, K. JP 09216866, 1997.
- 9. De% is based on the enantiomeric excess (ee) of amine 1 liberated from the less-soluble salt. Yield is calculated based on (RS)-1. Resolution efficiency $(E, %)$ = yield $(%) \times$ de $(%) \times 2/100$.
- 10. Pope, W. J.; Peachey, S. J. J. Chem. Soc. 1899, 75, 1066–1093.